module fortplot_figure_histogram !! Figure histogram functionality module !! !! Single Responsibility: Handle histogram calculation and visualization !! Extracted from fortplot_figure_core to improve modularity use, intrinsic :: iso_fortran_env, only: wp => real64 use fortplot_plot_data, only: plot_data_t use fortplot_figure_initialization, only: figure_state_t use fortplot_figure_plots, only: figure_add_plot implicit none private public :: calculate_histogram_bins, create_histogram_line_data, hist_figure contains subroutine calculate_histogram_bins(data, n_bins, normalize_density, & bin_edges, bin_counts) !! Calculate histogram bin edges and counts from data real(wp), intent(in) :: data(:) integer, intent(in) :: n_bins logical, intent(in) :: normalize_density real(wp), allocatable, intent(out) :: bin_edges(:), bin_counts(:) integer :: i, bin_index, n_data real(wp) :: data_min, data_max, bin_width real(wp) :: total_area n_data = size(data) ! Find data range data_min = minval(data) data_max = maxval(data) ! Handle case where all data points are the same if (abs(data_max - data_min) < epsilon(1.0_wp)) then data_min = data_min - 0.5_wp data_max = data_max + 0.5_wp end if ! Create bin edges allocate(bin_edges(n_bins + 1)) allocate(bin_counts(n_bins)) bin_width = (data_max - data_min) / real(n_bins, wp) do i = 1, n_bins + 1 bin_edges(i) = data_min + real(i - 1, wp) * bin_width end do ! Count data points in each bin bin_counts = 0.0_wp do i = 1, n_data bin_index = min(n_bins, max(1, int((data(i) - data_min) / bin_width) + 1)) bin_counts(bin_index) = bin_counts(bin_index) + 1.0_wp end do ! Normalize for density if requested if (normalize_density) then total_area = real(n_data, wp) * bin_width bin_counts = bin_counts / total_area end if end subroutine calculate_histogram_bins subroutine create_histogram_line_data(bin_edges, bin_counts, x_data, y_data) !! Create line data for histogram visualization as connected rectangles real(wp), intent(in) :: bin_edges(:), bin_counts(:) real(wp), allocatable, intent(out) :: x_data(:), y_data(:) integer :: i, n_bins n_bins = size(bin_counts) allocate(x_data(4 * n_bins + 1), y_data(4 * n_bins + 1)) ! Create line segments for each bar do i = 1, n_bins ! Bottom left corner x_data(4*(i-1) + 1) = bin_edges(i) y_data(4*(i-1) + 1) = 0.0_wp ! Top left corner x_data(4*(i-1) + 2) = bin_edges(i) y_data(4*(i-1) + 2) = bin_counts(i) ! Top right corner x_data(4*(i-1) + 3) = bin_edges(i + 1) y_data(4*(i-1) + 3) = bin_counts(i) ! Bottom right corner x_data(4*(i-1) + 4) = bin_edges(i + 1) y_data(4*(i-1) + 4) = 0.0_wp end do ! Close the path back to origin x_data(4 * n_bins + 1) = bin_edges(1) y_data(4 * n_bins + 1) = 0.0_wp end subroutine create_histogram_line_data subroutine hist_figure(plots, state, plot_count, data, bins, density, label, color) !! Add histogram to figure plots array type(plot_data_t), intent(inout) :: plots(:) type(figure_state_t), intent(inout) :: state integer, intent(inout) :: plot_count real(wp), intent(in) :: data(:) integer, intent(in), optional :: bins logical, intent(in), optional :: density character(len=*), intent(in), optional :: label real(wp), intent(in), optional :: color(3) integer :: n_bins logical :: normalize_density real(wp), allocatable :: bin_edges(:), bin_counts(:), x_data(:), y_data(:) ! Set defaults n_bins = 10 if (present(bins)) n_bins = bins ! Guard against invalid inputs (graceful no-op) if (size(data) == 0) then return end if if (n_bins <= 0) then return end if normalize_density = .false. if (present(density)) normalize_density = density ! Calculate histogram (validated inputs) call calculate_histogram_bins(data, n_bins, normalize_density, bin_edges, bin_counts) ! Create line data for visualization call create_histogram_line_data(bin_edges, bin_counts, x_data, y_data) ! Add as line plot call figure_add_plot(plots, state, x_data, y_data, label, color=color) plot_count = plot_count + 1 end subroutine hist_figure end module fortplot_figure_histogram